
An innovative low-cost Classification Scheme for
combined multi-Gigabit IP and Ethernet Networks

Ioannis Papaefstathiou
Inst. of Computer Science (ICS), Foundation for Research
& Technology - Hellas (FORTH) – Member of HiPEAC

Vassilika Vouton, P.O. Box 1385,
Heraklion, Crete, GR-711-10, Greece

ygp@ics.forth.gr

Vassilis Papaefstathiou
Inst. of Computer Science (ICS), Foundation for Research
& Technology - Hellas (FORTH) – Member of HiPEAC

Vassilika Vouton, P.O. Box 1385,
Heraklion, Crete, GR-711-10, Greece

papaef@ics.forth.gr

Abstract— IP is certainly the most popular wide area network
protocol while Ethernet is the most common Layer-2 network
protocol, and it is currently being deployed beyond the tight
borders of LANs. In order to accommodate the needs of MANs
and WANs, several QoS mechanisms employed either at the IP
layer or the MAC sublayer have been proposed. These QoS
mechanisms require identification of network flows and the
classification of network packets according to certain packet
header fields. In this paper, we propose a classification engine
employed either at the MAC sublayer or the IP layer, which is
the successor of a scheme already successfuly implemented which
is only employed at the MAC sublayer. This new scheme uses an
innovative hashing scheme combined with an efficient trie-based
structure. By using such techniques, the extremely high speed
decisions –at a rate of more than 100Gb/sec- are supported, while
the memory needs of the proposed engine are significantly lower
compared to those of the similar schemes currently used. This
engine has been implemented in hardware utilizing less than
0.2mm² in a state of the art CMOS technology. As a result the
proposed scheme is a very promising candidate for both the next-
generation IP classification engines(probably incorporated within
the high-end network processors) as well as for the Ethernet
equipments that need to support classification at multi-Gigabit
per second network speeds, while also employing the minimum
amount of memory.

I. INTRODUCTION
Ethernet is, by far, the most common Layer-2 network

protocol, and it is currently exploited in MANs and WANs.
Therefore, there are several schemes proposed for the QoS
support at this layer, such as the VLAN scheme employed in
the MAC sublayer [1], or certain QoS protocols for wireless
environments [2]. At the same time an Internet router which
provides more advanced services than packet forwarding, must
today support fine grained QoS. Those QoS mechanisms
require identification of network flows and classification of
packets according to their MAC or IP addresses, VLAN IDs
and port number fields. Moreover, in order to be able to
support fine-grained QoS they incorporate tens of thousands of
independent network flows identified by those fields. In the
case of Ethernet classification the length of the MAC
addresses, namely 48-bits, is what makes the classification task
difficult since exact matches in such a wide value is not a
trivial task. Since the main advantage of the Ethernet networks,

and the associated equipments, is their low cost, the
classification solutions that would be used within the specified
frameworks should be as cost efficient as possible. In the case
of IP classification, longest prefix match of the 32-bit IP
address is needed which is certainly a complicated task.

In this paper, we propose a classification engine utilized
both at the MAC sublayer and at the IP layer which uses a new
hashing scheme and internal replacement of MAC Vendor IDs
at the Ethernet layer, and the same hashing scheme together
with an innovative trie-based engine for the IP classificaton;
the Double Layer Classification Engine (DLCE) can reach
classification decisions at extremely high speeds while its main
advantage is that it utilizes less than two thirds of the memory
needed by the existing solutions. The efficiency of the
proposed engine comes from the fact that the hashing and the
replacement schemes, together with the trie-based engine used,
take advantage of the individual characteristics of the MAC
and IP addresses, respectively. This engine is the successor of
the HBCE hardware module, presented in [3] which is only
capable of supporting Layer-2 network packets. DLCE has also
been implemented in hardware and while its implementation
cost is minimal, it supports network rates higher than 100
Gb/sec while incorporating 128K independent rules.

II. RELATED WORK
L2 classification requires the fields mentioned in the last

section to be examined and the appropriate action to be
performed. Therefore, the network equipments need to store
some information and consult them for their decisions. The
information regarding the MAC or IP addresses, the VLANs
and the Ports are stored in internal data structures and for each
packet a search is conducted using the corresponding packet
header fields.

The nature of L2 classification requires exact matches and
many implementations use CAMs that provide single access
matching [4]. CAM solutions, although simple, they are
expensive and consume large amounts of power. Trie based
solutions [5] have poor performance since they cannot handle
efficiently long matching strings such as the MAC address.
Moreover, trie based solutions, at the MAC layer may require
several memory accesses and massive storage for the
associated pointers.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

211

Another popular solution is hashing of the MAC address
bits and storing the data in SRAM based lookup tables. The 48-
bits are hashed using a specific hashing function and an index
for the lookup table is generated. Many solutions use the CRC
polynomials for hashing since they have been proved very
efficient [6] however others, mainly due to cost reasons, use
direct mapping by the least significant bits of the MAC address
[7].

For the IP classification tasks the numerous longest prefix
matches (LPM) algorithms proposed for IP routing are in
general employed. One class of those schemes uses CAMs
such as [4], while several others make extended use of tries and
traverse tree data structures to find the matching prefix, as
presented in [5]. Unibit tries check one bit at a time and follow
the nodes until no matching bit is found. Schemes of this type
have a worst case lookup of 32 memory accesses for IPv4
(since the IPv4 address fields are 32 bits long) and spend also
lot of memory to save the pointers for the next nodes. On the
other hand, multi-bit tries traverse several bits at a time and this
provides faster searches. For example if we check 4 bits at a
time (4-bit strides) then the worst case is 8 memory accesses.
In these tries, problems arise when the prefixes are not
multiples of the stride length. Solution to this problem is prefix
expansion as described in [8]. CPE generates many prefixes
and leads to great memory waste (especially when the stride
length grows) and to non deterministic update times.

Other, LPM schemes from literature like Lulea [9] tried to
solve the memory waste of CPE by using compressed bitmaps
to represent strides. They use strides of 16,8 and 8-bits
consecutively to represent the 32-bit IPv4 address space. The
first 16bits are used as an index to a 64K table and the next 8-
bit strides are represented by their own bitmap algorithm where
each stride requires 32 bytes nodes even if only 1 prefix exists
in the 256 space. A lookup is performed at worst case with 9
memory accesses but incremental updates to this scheme are
inherently slow. Lulea is the most storage efficient scheme
presented in literature so far.

III. DOUBLE LAYER CLASSIFICATION ENGINE
Our solution for both Layer-2 and Layer-3 classification is

based on hashing, but we propose a scheme that exactly
matches the special characteristics of the MAC and IP
addresses. Moreover, in the MAC sublayer it employs the
technique of internal MAC Vendor replacement, while in the
IP layer it uses a sophisticated trie-based algorithm. The DLCE
is designed to support tens-of-thousands of IP and MAC-
address rules. Every rule in the ruleset is associated to a
number called FlowID (which can, for example, be a pointer to
another memory which holds the associated information for
this rule or simply a number identifying the output port of the
device). We decided to use 15-bit FlowIDs, translating to 32K
unique and independent network flows, which have been
proved to be enough for most network equipments.

A. MAC Address Hashing
We developed a hashing function to map the IP and MAC-

address rules into a table that will hold the FlowID of the
associated rule. Those rules are stored in a 64K table called

MAC_TBL and the indexes to it are generated by our hashing
function applied to the address bits. The collisions due to
hashing are handled by pointers to variable size blocks.
Handling variable size blocks requires a dynamic memory
management scheme which is described in [3]. The number of
entries in each variable size block is defined by the number of
rules that collide within a specific entry of the EXACT_TBL.

In the most challenging task of the 48-bit MAC addresses
our hashing scheme applies an XOR function and the 16-bit
EXACT_TBL address is produced as follows:

EXACT_TBLindex =
{MAC[47:40] xor MAC[31:24] xor MAC[15:8],
 MAC[39:32] xor MAC[23:16] xor MAC[7:0]}

To identify a certain MAC-address rule within a particular
table entry we also need to save some additional information so
as to be able to distinguish those that collide. Fortunately, we
don’t need to save all 48-bits and we take advantage of the fact
that the XOR function can be “inversed”. Therefore a certain
MAC-value associated with address A of MAC_TBL can be
reproduced by the 16-bits of A and the last 32-bits (Hval) of the
MAC address as follows:

MAC[47:40] =
 A[15:8] xor Hval[31:24] xor Hval[15:8]
MAC[39:32] =
 A[7:0] xor Hval[23:16] xor Hval[7:0]
MAC[31:0] = Hval(31:0)

So by using Hval we can uniquely identify each MAC-
address rule. If we use CRC-16 to produce the 16-bit indexes,
like the popular schemes described in the related work section,
then we would have to store the complete 48-bits of the MAC
address since there is no inverse CRC function. Moreover,
CRC polynomials don’t have one-to-one correspondence
between input and generated values. The speed and storage
performance of our hashing function is discussed in section IV.

B. MAC Vendor Replacement
The official IEEE OUI [10] has published all the assigned

24-bit MAC vendor IDs and the associated company names.
Based on them we have observed that the 24-bit vendor address
space of the MAC addresses is not fully occupied. In fact,
fewer than 8000 vendors are active instead of the 224 possible.
Therefore we can replace the 24-bit vendor ID with a 13-bit
internally assigned vendor ID. The last 24-bits of the MAC
address that uniquely identify a device, of a certain vendor,
remain unchanged. This replacement reduces the storage
requirements for each MAC-address rule, at the cost obviously
of the replacement operation. Consequently, every incoming
MAC-address rule need to be translated before the actual
processing begins.

We can now consider that each MAC-address rule handled
by our system is 37-bits long. Naturally, this replacement
means that we keep a small table with 8192 entries called
VID_RPL that matches the existing 24-bit Vendor ID values
with the internally assigned 13-bit Vendor ID values. This table
can be easily constructed since all Vendor IDs are sequentially
assigned by IEEE and a few ‘holes’ that exist in the address
space can be handled by a 24-to-13 decoder. Although this

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

212

table is constant and thus can be kept in a ROM, we can also
use a method that learns the connected MAC addresses and
assigns incrementally an internal Vendor ID.

After this replacement we define a new hashing function on
the 37-bits of the MAC address. Now, the 16-bit indexes in
MAC_TBL are generated as follows:

MAC_TBLindex = { MAC[31:24] xor MAC[15:8] ,
 MAC[23:16] xor MAC[7:0] }

Notice that we don’t use the 6 MSB of the replaced Vendor
ID in order to have a byte balanced hashing function. The new
Hval is now 21-bits and is defined as follows:

Hval = { MAC[36:24] , MAC[7:0] }

Now, a MAC-address associated with address A of
MAC_TBL can be reproduced by the 16-bits of the address and
Hval as follows:

MAC[36:24] = Hval[20:8]
MAC[23:16] = A[7:0] xor Hval[7:0]
MAC[15:8] = A[15:8] xor Hval[15:8]
MAC[7:0] = Hval(7:0)

As described in [3], the FlowID, the Hval and the
information containing the number of collisions and the
address of the first of the chain of the collided nodes are all
fitted in a 36-bit standard memory word.

C. IP layer classification
In order to be able to develop an efficient classification

scheme, we collected several routing tables from backbone
routers of the Internet that are available in IPMA [11] and
analyze them, in terms of the length of the various prefixes.
Note that those routing prefixes are also used for the
classification of the network flows according to the different
QoS criteria. The distribution of the various lengths is shown
in Fig. 1; from this graph it is clear that 99% of the prefixes
have lengths in the interval between 16 and 24 and more than
half of the total prefixes have length equal to 24. This
distribution has been found to be constant over time and stable
between routing tables of various sizes, hence we have used as
a basis for our algorithm. In particular the proposed scheme has
the following properties:

1. Easily implementable in hardware
2. Moderate algorithmic complexity
3. Fast lookups times for common case
4. Lower storage requirements than the existing solutions
5. Deterministic and bounded incremental update times, in

comparison with the unbounded such times of the vast
majority of the proposed schemes

In order to cope with the above requirements we ended up
with the DLCE which:
• Uses strides and multi-bit trie nodes in order to traverse

several bits at a time and produce fast lookups.
• Employs data structures with multi-bit nodes optimized to

perform efficiently in the prefix interval 16 to 24.
• Its nodes are represented with bitmaps that can be

processed fast in hardware and require small storage.

• The updates in the nodes are executed by well defined
routines and in deterministic time.

Figure 1. Routing Table Distribution

1) DLCE Trie Nodes
The key data structure of DLCE is a trie node that can hold

prefixes of lengths from 0 to 7 bits. This trie has 8 levels and
therefore the total number of possible prefixes that can be
accommodated are 255. We can use a bitmap to represent all
the possible prefixes and this needs at least 255 bits as
presented in [9]. According to this representation every prefix
is correlated with a specific bit position inside the bitmap. If a
specific bit is set then the corresponding prefix exists.

Consider a trie that can accommodate prefixes with lengths
from 0 to 3 bits as shown in Fig. 2. The prefix with length 0,
namely *, is assigned with number 0, the prefix with length 1
and the prefix bit set to 0, namely 0*, is assigned with number
1, the prefix with length 1 and the prefix bit set to 1, namely
1*, is assigned with number 2 and so on as Fig. 2 presents.
Moreover, the level of the trie where a specific prefix is located
is equal to its length.

Figure 2. Prefix trie that supports prefixes up to length 3

We can derive a formula that correlates the length and the
decimal value of a prefix with a number. Prefix with length 0 is
assigned number 0 and all the other prefixes are numbered by
the following formula:

PrefixNO = PrefixValue + 2PrefixLength – 1

The assigned prefix number can be used to indicate a
specific bit position inside the bitmap. Since the bitmap that
can accommodate all prefix lengths from 0 to 7 needs 255 bits
even for a single prefix in this range, the trie node needs 32
bytes. We can prevent this memory waste and partition this trie

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

213

in 17 subtries where each subtrie can support prefixes with
lengths 0 to 3 as shown in Fig. 3. We store the prefixes that
have length 0 to 3 in the subtrie numbered 0 and the prefixes of
higher length, namely 4 to 7, to the corresponding subtrie. The
subtrie for the prefixes that have length 4 to 7 is defined by the
4 MSB of the prefix. The prefixes that have their 4 MSB equal
to 0000 are stored in the subtrie numbered 1, the prefixes that
have their 4MSB equal to 0001 are stored in the subtrie
numbered 2 and so on as Fig. 3 presents.

Figure 3. Trie partitions

We can easily derive a formula that correlates the length
and the MSB of a prefix with a subtrie number. Prefixes with
length 0 to 3 are stored in the subtrie 0 and for the prefixes of
lengths from 4 to 7 we use the following formula to find the
subtrie number:

SubtrieNO = PrefixValue[0:3] + 1

To store efficiently the information about the subtries, in
the DLCE we define a certain bitmap call TrieBmp. In
TrieBmp we correlate each bit with a specific subtrie according
to the SubtrieNO formula. When a bit inside TrieBmp is set
then the corresponding subtrie has a least 1 prefix active. For
every active subtrie we need the information about the active
prefixes belonging to it, therefore we define another bitmap
called PrefixBmp. In PrefixBmp we correlate each bit with a
specific prefix according to the PrefixNO formula. When a bit
inside PrefixBmp is set then the corresponding prefix is
included in the overall data structure (i.e. the prefix is
“active”).

The partitioning of 8-bit tries into smaller 4-bit subtries
gives the flexibility to save only the active prefix bitmaps and
not all of them. The trie bitmap needs 17 bits and each prefix
bitmap needs 15 bits. This partitioning can be efficiently
implemented by the dynamic memory management scheme of
the MAC classification engine presented in detail in [3],
because the variable number of prefix bitmaps requires pointers
to variable size blocks.

The associated information for each prefix is considered an
N-bit quantity (the data associated with each rule), say 16-bits,
and should be stored along with the prefix bitmap. Since more
than one prefixes could be active we also need dynamic
pointers to variable size blocks. So along with the prefix
bitmap we save a pointer to the associated prefix data.

To locate the subtrie of a specific prefix in the trie bitmap
we use the subtrie formula below, where Tindex indicates the bit
position of the actual subtrie number.

• If the prefix has length 0-3 then :
Tindex = 0

• If the prefix has length 4-7 then :
Tindex = prefix[0:3] + 1

To locate a specific prefix in the prefix bitmap we present
the formula shown below, where Pindex indicates the bit position
of the actual prefix in a specific subtrie.

• If Tindex = 0
• If prefix length is equal to 0 then :

Pindex = 0
• If prefix length is equal to 1 then :

Pindex = prefix[0] + 1
• If prefix length is equal to 2 then :

Pindex = prefix[0:1] + 3
• If prefix length is equal to 3 then :

Pindex = prefix[0:2] + 7
• If Tindex != 0

• If prefix length is equal to 0 then :
Pindex = 0

• If prefix length is equal to 1 then :
Pindex = prefix[4] + 1

• If prefix length is equal to 2 then :
Pindex = prefix[4:5] + 3

• If prefix length is equal to 3 then :
Pindex = prefix[4:6] + 7

To illustrate the data structures used by DLCE we introduce
an example with the prefixes shown in Table I. The two
leftmost columns have the actual prefixes and the associated
information and the two rightmost columns show the internally
represented subtrie and prefix number pairs. As calculated, a
general view of the data structure needed to store the prefixes
of the example is shown in Fig. 4.

TABLE I. PREFIX EXAMPLE

Prefix
[0:6]

Associated
Info

Subtrie
Number

Prefix
Number

00001* 23 1 2
0000101* 47 1 12
0000110* 7 1 13
01* 15 0 5
100* 121 0 11
1001* 36 10 0
1100* 51 13 0
110011* 3 13 6

In order to be able to efficiently search the blocks that are
generated by our dynamic memory management scheme
described in detail in [3] we have to have the prefix bitmaps
and the associated prefix information sorted inside the blocks.
The prefix bitmap for the first active subtrie should be placed
first in the variable size block, the second in the second
position etc. Moreover this indicates that we should know the
number of set bits in the bitmap, fortunately this is a trivial

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

214

operation for hardware to perform. The requirement for
dynamic memory management generates an additional
complexity in insertions or updates since the variable size
blocks need to be resized appropriately and put sorted. This
operation can be handled easily since resizing and sorting is
limited to 17 nodes.

Figure 4. Trie data structure example

For a given 7-bit value, DLCE should first find the
candidate subtries that could match a certain prefix and then
the candidate prefixes, inside the subtrie, that could also match.
Tracking the longest subtrie is the solution. The candidate
subtries are always two:

 T1index= 0 and
 One of the subtries 1-16 depending on the

value T2index = value[0:3] + 1.

Inside the two subtries the candidate prefixes are four:

 for T1index :
 P1index = 0
 P2index = value[0] + 1
 P3index = value[0:1] + 3
 P4index = value[0:2] + 7

 for T2index :
 P1index = 0
 P2index = value[4] + 1
 P3index = value[4:5] + 3
 P4index = value[4:6] + 7

We check the bit positions in TrieBmp for the two subtries
and if both exist we give priority to the second subtrie which
produces longer prefixes. Inside a matching subtrie we check
all the bit positions in PrefixBmp for the 4 prefixes by giving
priority to the fourth prefix which is the longest. The associated
information for a matched prefix is retrieved by the node
indicated by the pointer stored at the node of the matched
prefix.

The DLCE scheme uses the trie nodes for all the distinct 7-
bit prefix lengths inside the 32-bit address space. In particular,
it supports trie nodes for the following prefix intervals: (a) 0-7,
(b) 8-15, (c) 16-23, (d) 24-31 and (e) 32. To hold the root
nodes for the prefixes in each distinct interval, DLCE uses
several tables as shown in Fig. 5. For the interval 0-7 we have a
single entry for root called TBL0. For interval 8-15 we have 28

possible roots, therefore we use a 256-entry table called TBL8
and the indexing is done with the first 8-bits of the prefix. For
interval 16-23 we use a 216=65536 table called TBL16 and uses
the first 16-bits of the prefix as index. For interval 24-31 we
don’t use 224 entries because it would lead to great storage
waste since no routing table could have 16777216 prefixes in
this interval. Instead we use 216 entries in table TBL24 and
indexing is done by hashing the first 24-bits of the value. For
the 32 bit prefixes we use only 212 entries in table TBL32, since
most routing tables have few entries in this interval, and
addressing is done by hashing.

Figure 5. DLCE Tables

Indexes in TBL24 and TBL32 are generated by the exact
same function as in the case of MAC Layer classification by
using the corresponding bits, while the collisions are also
handled by the same scheme handling the collisions in Layer-2
and described in section III.A.

Note that all distinct intervals are independent and this
gives us the flexibility to start searching for a prefix from the
middle of the address space. Searching sequentially would
require to lookup all 5 tables but we can use a binary search
type of access and limit the lookups to 3 or less. Furthermore,
we can implement parallel searches in hardware if each table is
stored in a separate memory.

 The DLCE searches the tables in specific sequence in
order to minimize the number of accesses. Since 99% of the
prefixes exist in the intervals 16-23 and 24-31, it is more likely
to find the longest match there by examining the associated
tables. At first we look in TBL16 and if a prefix match occurs
then we can search in TBL24 and TBL32 to find a matching
prefix. If lookups in TBL16 or TBL24 or TBL32 cannot find a
match then we proceed to search TBL8 and if there is not any
match again we finally search in TBL0. If after TBL32 a match
was produced then our lookup process does not proceed to the
next tables. The sequence of lookups is the following:

TBL16 → TBL24 → TBL32 → TBL8 → TBL0

IV. PERFORMANCE AND HARDWARE COST
In this section we calculate and analyze the storage needs of

DLCE, while we also present the performance achieved by our
hardware implementation, together with its complexity. In the
case of Layer-2 classification, as it is clearly demonstrated in

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

215

[3], the memory requirenments are significantly lower than
those of the existing solutions (mainly the ones based on the
CRC function), while the proposed scheme is also simpler and
less expensive to implement in hardware than the
corresponding CRC one.

For the IP classification, we demonstrate in Table II both
the memory needed for the static tables, as well as the memory
requirements of the scheme when the entire real-world prefix
tables are stored in its data structures.

TABLE II. MEMORY REQUIREMENTS FOR IP CLASSIFICATION

Prefix Table
(Total

Prefixes)

Static
Tables

Collision
Nodes

Trie
Nodes

Total

AADS
(40K) 595 KB 24 KB 236 KB 855 KB

MAE-EAST
(60K) 595 KB 59 KB 357 KB 1011 KB

PAIX
(90K) 595 KB 128 KB 538 KB 1264 KB

Those results clearly demonstrate that the static tables
consume nearly 50% percent of the total storage. The collision
nodes required are relatively small and require few Kbytes but
the trie nodes possess a respectable part of the overall storage.

The whole design is fully pipelined and uses four parallel
memories/banks of memories, and thus the lookup performance
of DLCE is based on the pipeline stalls which directly depend
on the total number of memory accesses required to find a
match. In the case of both Layer-2 and IP classification the
performance of DLCE depends on the collisions on the main
static tables, since when collisions occur we have to lookup
sequentially all the colliding rules, triggering stalls in the
pipeline. Moreover, in the case of the IP classification the
performance also depends on the number of steps required to
find the longest prefix match.

To calculate the network performance we have used two
different memory modules, 200MHz and 400MHz
synchronous SRAMs. Since classification is performed for
every incoming network packet, we calculate the throughput of
our system based on the most conservative (worst-case)
approach, by assuming that DLCE handles only minimum
sized Ethernet (64 bytes) and IP (40-bytes) packets, while in
the average case average packet sizes are considered. The
summary of the supported link speeds is presented in Table III
where the average throughput is based on the average pipeline
stalls and the worst-case on the worst case stalls. This worst
case is triggered when the lookups that should be performed,
always encounter the maximum number of collisions and
distinct number of steps in the case of IP classification.

This scheme has also been synthesized and placed and
routed in a 0.13µm CMOS technology, and it covers only
0.18mm² of silicon area, while been clocked at 300MHz.

In general, this new proposed system has all the advantages
of HBCE, while it also supports classification decisions at
Layer-3, at a minimal cost of an additional 0.8mm² of silicon,
since 90% of the HBCE sub-module is also used by the IP
classification engine.

As those results clearly demonstrate the proposed scheme
can be a very valuable component/submodule not only for the
Layer-2 network equipments, but, more importantly, for
today’s multi-layer network processing units that need to
support QoS for several thousands network flows at the
network rate of 100Gb/sec.

TABLE III. DLCE NETWORK PERFORMANCE

SRAM 200MHz SRAM 400MHz Active
MAC

Addresses
Average
(Gbps)

Worst Case
(Gbps)

Average
(Gbps)

Worst Case
(Gbps)

32K 68.7 17.1 137.5 34.2
48K 59.2 14.6 118.4 29.2
64K 51.7 12.8 103.5 25.6

IP-layer 52.1 16.2 104.6 32.3

When comparing this scheme with the existing solutions,,
in terms of Layer-2 classification, it has significnatly lower
memory requirements than the existing solutions, while
supporting, at least, the same decision rate. Moreover, when
compared to the existing classification schemes, eventhough it
needs slightly more memory than one of them, it is one of the
very few that supports updates in bounded, and limited time,
while it matches the performance of them in terms of the
supporting network rates.

V. CONCLUSIONS
This paper presents a novel classification engine that

handles both Ethernet and IP network streams. The combined
scheme called Double Layer Classification Engine (DLCE)
handles up to tens of thousands distinct classification rules
while supporting network rates even more than 100Gb/sec. The
systems is the successor of the HBCE engine which could
support only Ethernet packets. Its hardware implementation
covers 0.18mm² of silicon area, while it is clocked at 300MHz.

REFERENCES
[1] IEEE 802.1q Standard, “Virtual Bridged Local Area Networks”,
[2] Giovanni Pau et.al , “A Cross-Layer Framework for Wireless LAN QoS

Support”, IEEE ITRE, August 11-13, 2003, Newark, New Jersey, USA
[3] V. Papaefstathiou, I. Papaefstathiou, “A Hardware Engine for Layer-2

classification in low-storage, ultra-high bandwidth environments”, IEEE
Design Automation & Test in Europe (DATE 2006), March 6-10,
Munich, Germany..

[4] J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMs”,
in IEEE Infocom, 1993.

[5] P. Gupta and N. McKeown, "Algorithms for Packet Classification",
IEEE Network, March/April 2001, vol. 15, no. 2, pp 24-32.

[6] R. Jain, "A Comparison of Hashing Schemes for Address Lookup in
Computer Networks", IEEE Transactions on Communications, Vol. 40,
No. 3, Oct. 1992, pp. 1570-1573

[7] VIA Networking Atlantic™ VT6510A Switch Controller
[8] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled

Prefix Expansion”, in IEEE Sigmetrics, 1998.
[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding

Tables for Fast Routing Lookups”, in ACM SIGCOMM, 1997
[10] IEEE OUI and Company_id Assignments,

http://standards.ieee.org/regauth/oui/index.shtml
[11] Internet Performance Measurement and Analysis (IPMA) project,

http://www.merit.edu/~ipma/

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

216

